

Quick Start Guide

Contents

Useful links .. 2

SAFE User Guide .. 3

Login .. 3

Sign Up .. 3

Terms and Conditions .. 5

Main Page (Example shows a fake user) ... 5

Your user account(s) .. 6

Creating an SSH key | Accessing Our Machines | How to Upload a new SSH Key 7

Purpose of an SSH Key ... 7

Benefits of SSH Keys .. 7

Private Key .. 7

Public Key .. 8

How to create your SSH Key? .. 8

Backing Up .. 12

Uploading your SSH Key to SAFE/ Updating your SSH Key ... 12

Submitting a job to JADE2 ... 13

The Slurm Scheduler .. 13

The module tool .. 19

Using Containerised Applications .. 21

How and where to save your data on JADE2 ... 25

2

Useful links

▪ To gain access to the machine please create a Hartree SAFE account (if you do not have one
already):
https://um.hartree.stfc.ac.uk/hartree/signup.jsp

▪ Please sign up for a Hartree ServiceNow account, this will allow you to access support and

information for JADE 2:
https://stfc.service-now.com/hartreecentre

▪ Further information on how to use the machine can be found via service-now:

https://stfc.service-
now.com/kb?id=kb_search&kb_knowledge_base=ad6a44fc1b609050dbb77449cd4bcb96

▪ Slurm documentation: https://slurm.schedmd.com

▪ Main JADE2 page: https://um.hartree.stfc.ac.uk/hartree

▪ JADE2 Docs: http://docs.jade.ac.uk/en/latest/jade/connecting.html

▪ JADE2 Forum/Service: https://stfc.service-now.com/hcssp/

▪ Slurm interactive jobs: https://hpc-

uit.readthedocs.io/en/latest/jobs/interactive.html

▪ Singularity container building: https://sylabs.io/guides/3.0/user-
guide/build_a_container.html

https://um.hartree.stfc.ac.uk/hartree/signup.jsp
https://stfc.service-now.com/hartreecentre
https://stfc.service-now.com/kb?id=kb_search&kb_knowledge_base=ad6a44fc1b609050dbb77449cd4bcb96
https://stfc.service-now.com/kb?id=kb_search&kb_knowledge_base=ad6a44fc1b609050dbb77449cd4bcb96
https://slurm.schedmd.com/
https://um.hartree.stfc.ac.uk/hartree
http://docs.jade.ac.uk/en/latest/jade/connecting.html
https://stfc.service-now.com/hcssp/
https://hpc-uit.readthedocs.io/en/latest/jobs/interactive.html
https://hpc-uit.readthedocs.io/en/latest/jobs/interactive.html
https://sylabs.io/guides/3.0/user-guide/build_a_container.html
https://sylabs.io/guides/3.0/user-guide/build_a_container.html

3

SAFE User Guide

The online Service Administration system is at URL:
https://um.hartree.stfc.ac.uk/hartree/login.jsp

SAFE is the principal method used to manage project and user accounts. It also lets you view resource
usage and submit queries. Here we provide a step by step guide.

The SAFE front page has a “Login” form and a link to “Sign Up”.

Image of SAFE login dialog

Login

(If you have already signed up) - Type your username (this is your email address) and password into
the form to log into the SAFE system.

If you have forgotten your password, click - ' Email' next to 'Request a new website password'.

Sign Up

Complete the form with your details to apply for an individual user account. You will normally do this
if you are part of an approved Hartree Centre Project and your Principle Investigator (PI) or Company
Account Manager (CAM) has asked you to do so.

https://um.hartree.stfc.ac.uk/hartree/login.jsp

4

Image of SAFE personal details dialog

If any details were typed in incorrectly or they change, you have the ability to edit these details after
you log in.

Please note: we require an institutional or corporate email address. If you use, for example, a gmail
address you will see a field error message in the field such as “Forbidden email address gmail”

In order to create your SSH key via Windows/Linux/Unix/Mac - Click here

5

Terms and Conditions

During signing up you will be asked to agree to the STFC Acceptable Use Policy. The policy is
described here: http://www.stfc.ac.uk/aup .

Once you submit the form you will be asked to accept the Terms and Conditions of Access.

Please read these Terms and Conditions. By clicking the ‘I accept the Terms and Conditions
of Access’ button you will be entering into a contract with us. If you do not agree to these
Terms and Conditions, we will not be able to register you or allow you to use the service.
Before accepting the Terms and Conditions, please note: you can change any of the details
you have input by clicking your browser’s BACK button and then editing them. You can also
change them later by returning to this website. These Terms and Conditions are offered only
in English. You may read the terms of the agreement here.

Click the button to accept the Terms and Conditions of Access.

You will then be sent an email with your SAFE Web ID and password. Your access to the SAFE interface
will always be via this Web ID (your email address) and web password.

When you have obtained a password and logged in you will receive a welcome message and after
continuing you may well be asked to change your Web password due to expiry. Enter the password
supplied and then the new password you want to use.

Once your password has been updated, you will be sent to the SAFE ‘Main’ menu page (see below).

Please note: SAFE is for managing accounts on projects and viewing your budget allocation. Help
with the Hartree Centre machines can be found on the Self Service Portal.

Main Page (Example shows a fake user)

This menu displays information such as:

▪ Your details - This is where you can keep your personal details up to date.
▪ Information about your project and group - Here you can view the projects you are part of and

the groups.
▪ Request Join Project - By clicking on ‘Request Join Project’ you can request to join a project.

Choose a Project from a drop down menu and enter the signup password for the Project.
This signup password will have been supplied to you by the PI of the Project. Click on
‘Request’ to obtain a UserID. It will then be the responsibility of your PI to ‘process’ and
accept your request.

Once you have joined a Project, other boxes will be present.

http://www.stfc.ac.uk/aup

6

Your user account(s)

Image showing the SAFE list of your user accounts

A new user account is generated for you for each project you join. This means you may have multiple
user accounts. This section shows you a list of all of your accounts.

You will be allocated a base user name identifier of the form xxxnn e.g. axb92 (if you have no middle
initial an ‘X’ is used instead). This will be combined later with the Group ID for each project to which
you belong, to give an overall UserID of the form xxxnn-aaann e.g. axb92-xyz01.

You can view your Username(s), Machine and Status.

▪ An account with status New is waiting for approval from a project manager.
▪ An account with status Pending has been approved but has not yet been created.
▪ An account with status Active has been approved has been created - therefore please check

your emails.

For ‘Active’ users, clicking ‘View’ takes you to a page where you can request a New Password, View
your machine password (requires web password) and add an additional certificate.

7

Creating an SSH key | Accessing Our Machines | How to Upload a new

SSH Key

JADE2 Machine details: Jade2.hartree.stfc.ac.uk - Access Requires SSH key

JADE2 accounts will not be processed until an SSH key is uploaded to your SAFE account, you can do
this by following these steps.

Purpose of an SSH Key

The purpose of an SSH key is for authentication purposes only and serves to confirm that you really
are who you say you are when logging onto the systems. SSH itself then encrypts the data flowing
over the connection.
SSH keys come in pairs - a "private" key and a "public" key. We have provided instructions below on
how to generate a pair of SSH keys on different computer platforms and what you need to do before
accessing our systems.

Benefits of SSH Keys

One advantage of using SSH keys for logging on to the Hartree Centre systems is that you may have
multiple user ids on the systems, but we will set them up with the same SSH public key so that you
don't need to remember and maintain multiple passwords.
If you wish to log in to our systems from multiple machines, for example, a home and work PC, then
you have two options to make this easy:
Copy your private key (probably called id_rsa) between your different systems.
Add more public keys to the file ~/.ssh/authorized_keys in your accounts on the Hartree Centre
systems.
Since we are using SSH to know that it's really you who is logging on to the Hartree Centre systems,
how do you know that it's really the Hartree Centre that you're logging on to?
The first time during connection you will receive a prompt that displays the "RSA key fingerprint" and
if you want to be certain you can check that this matches the fingerprint of the appropriate system.
If it doesn't match, it's possible although unlikely that you are connecting to someone "pretending"
to be us.

Please feel free to contact us via REPORT IT on the portal homepage if you are concerned. Once you
agree that it's OK, the details are stored and you don't get prompted again.

Private Key

The private key is something you should keep to yourself and guard safely. If you create the key on
a Unix/Linux/Mac system it must not be "world readable", so that no user on the same system can
see it. (Use chmod 600 ~/.ssh/id_rsa to correct the file permissions if you get a warning about this.)
You may further protect your SSH private key on your machine when you create it by creating a
"passphrase". This means that every time you use SSH you will be prompted to enter this passphrase,

https://um.hartree.stfc.ac.uk/hartree/
https://stfc.service-now.com/hcssp?id=sc_cat_item&sys_id=2b5814621bd05810a4a8dc65bd4bcb79

8

and so that anyone else who manages to copy your private key will be unable to use it unless they
also know the passphrase.
In addition, if you have created a passphrase, you can use the ssh-add command on your computer
in conjunction with an implementation of ssh-agent so that your passphrase only needs to be
entered once and is saved in your computer's memory. This may be convenient if you need to log on
and off repeatedly.

Public Key

You can safely distribute your public key to anyone with whom you want to communicate. Anyone
who has your public key can use it to decrypt messages you encrypt with your private key. Your public
key is required to be uploaded into our SAFE system in order to gain access to the systems.

How to create your SSH Key?

On Windows

You can use PuTTYgen to create your key and PuTTY to access the systems. Alternatively, you could
use Cygwin and follow the instructions below in the section “On Linux”.

These instructions relate to PuTTYgen. Please note, we do not support or provide PuTTY or
PuTTYgen.

First, download PuTTY and PuTTYgen from the external link and install.

01. Start PuTTYgen.
02. Check that SSH-2 RSA is checked.
03. The minimum ‘Number of bits’ is 1024 but you can change this number to 2048 for increased

security by typing this number in the ‘Number of bits in a generated key’ box at the bottom
of the window.

04. Press ‘Generate’.
05. Move your mouse randomly in the small screen in order to generate the key pairs.
06. A key comment will be generated, which will identify the key (useful when you use several

SSH keys).
07. You can choose to enter a passphrase which has to be confirmed. The passphrase is used for

extra protection for your key. You will be asked for it when you connect via SSH.
08. Click “Save public key” to save your public key. Give it a meaningful name and use the format

.pub
09. Click “Save private key” to save your private key. You could give it the same name as the

public key, but suffixed with “priv” to show that they are part of a pair. For example, if you
called the public key “mykey”, call the private key “mykey_priv”. Make a note of the public
key filename, as you will need it when logging in to the Hartree Centre systems.

Uploading Your SSH Key to PuTTY (For Windows Users)

If PuTTY is your chosen software to use, please find below our instructions: (Again, please note PuTTY
is not supported by the Hartree Centre)

https://um.hartree.stfc.ac.uk/hartree/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

9

▪ Start PuTTY and type Jade2.hartree.stfc.ac.uk into the "Host" box.
▪ In order to save your session for future use, give it a name in the "Saved Sessions" box. Now

click the Save button.

▪ You can also enter your login ID in the 'Data' window (under Connections) in the box called
Auto-login username.

▪ To add your SSH key, in the navigation tree on the left, expand the + next to SSH, and then
click on Auth.

▪ Click the Browse button and select the filename of the private key you created previously.

For example:

10

You can also add your UserID so that you don't have to enter it each time you logon (if you are the
sole user of the desktop machine)

▪ Go to the Connection > Data screen and type in your userID in the Auto-login username box.
▪ Be sure to click on Session in the navigation tree (you may need to scroll up) to return to the

first page, and click Save again.

Now you are ready to login, and you have a ready-made PuTTY session for next time.

▪ Click Open to proceed or double-click the session name.
▪ During first time logging in - Select Yes when prompted to accept the server’s host key.

The RSA key fingerprint should be 52:af:69:42:15:64:9d:91:e2:e9:69:58:41:bf:38:0e.

▪ If you haven't previously saved your user-id - You will now be prompted via 'Login as:' here
type your user id.

On Linux and Mac OSX

You can create an ssh key pair in a terminal window as follows: Use the ssh-keygen utility to create
your key. For a 2048 bit RSA key do:

11

$ ssh-keygen -t rsa

For increased security, you can make an even larger key with the -b option. For example, for 4096
bits do:

$ ssh-keygen -t rsa -b 4096

01. When prompted, you can press Enter to use the default location
(/home/your_username/.ssh/id_rsa on Linux, or /Users/your_username/.ssh/id_rsa on
Mac) if you don’t already have a key installed, or specify a custom location if you are creating
a second key (or just want to for whatever reason).

02. You can choose to enter a passphrase at the prompt or just hit enter (twice) to leave the
passphrase blank. Using a passphrase is more secure, but you will need to type it in each time
you make a connection using this key pair. This is just a password used to unlock your key. If
someone else gets a copy of your private key they will be able to log in as you on any account
that uses that key, unless you specify a passphrase. If you specify a passphrase they would
need to know both your private key and your passphrase to log in as you.

03. Your private key should now be in the location you specified, and your public key will be at
that same location but with ‘.pub’ tacked onto the filename.

04. Change to the directory containing your public key and display the key by typing
cat id_rsa.pub

05. Highlight and copy the entire string beginning “ssh-rsa”
06. Go to the field “SSH Public key” in the SAFE sign up page and paste in the Key using CTRL+V,

(or right click, and Paste).

Please note: at the time of creating a UserID, we use the most recent SSH Key. Additional keys that
are uploaded to SAFE will not be updated automatically so if you want to use a different Key after the
UserID is created you must tell us via selecting REQUEST IT from the portal.

Unix/Linux/Mac First Time Log in

ssh to the login node, providing the user-id you have been given, which will be in the form: axb92-
gxh02.

For example:

yqk32924vig ~ $ ssh djc87-build@Jade2.hartree.stfc.ac.uk

OUTPUT: Last login: Thu Oct 18 09:55:39 2012 from rw46vig.dl.ac.uk

Or you could do:

ssh Jade2.hartree.stfc.ac.uk -l djc87-build

During the first time you connect, you will be asked to accept the server's host key.
Type Yes to accept it.
The RSA key fingerprint should be 52:af:69:42:15:64:9d:91:e2:e9:69:58:41:bf:38:0e.

https://um.hartree.stfc.ac.uk/hartree/
https://stfc.service-now.com/hcssp?id=sc_cat_item&sys_id=3eef24411ba0d050dbb77449cd4bcb54&sysparm_category=b62793d41b205050dbb77449cd4bcb57

12

Backing Up

It is also worth backing up your SSH key is an external format, eg. a secure USB drive. This way if you
change your workstation it is possible to copy your SSH details to

Uploading Your SSH Key to SAFE/ Updating Your SSH Key

In order to update your SSH key:

▪ Simply log into SAFE and select ‘Update personal details’.
▪ Add your new SSH key by copying and pasting from notepad to the text box ‘SSH Public Key’

or attach a file.

Here it is possible to add multiple keys, please ensure space is between each key. Once you have
uploaded the key, it will then be necessary for your account to be manually updated. (Please note,
this is not an instant update.)

https://um.hartree.stfc.ac.uk/hartree/

13

Submitting a job to JADE2

Running software on the JADE2 system is accomplished with batch jobs, i.e. in an unattended, non-
interactive manner. Typically a user would log into the JADE2 login node prepare a job script and
submit it to the job queue.
For the list of available software on JADE2, please refer to the module tool section of this document.

The Slurm Scheduler

Running software on the JADE2 system is accomplished with batch jobs, i.e. in an unattended, non-
interactive manner. Typically a user logs in to the JADE2 login nodes, prepares a job script and
submits it to the job queue.

Jobs on JADE2 are managed by the Slurm batch system, which is in charges of:

▪ allocating the computer resources requested for the job,
▪ running the job and
▪ reporting the outcome of the execution back to the user.

Running a job involves, at the minimum, the following steps

▪ preparing a submission script and
▪ submitting the job to execution.

Commands

The table below gives a short description of the Slurm commands that are likely to be useful to most
users:

Command Description
sacct report job accounting information about active or completed jobs

sbatch
submit a job script for later execution (the script typically contains one or more
srun commands to launch parallel tasks)

scancel cancel a pending or running job

sinfo
reports the state of partitions and nodes managed by Slurm (it has a variety of
filtering, sorting, and formatting options)

squeue
reports the state of jobs (it has a variety of filtering, sorting, and formatting
options), by default, reports the running jobs in priority order followed by the
pending jobs in priority order

All Slurm commands have extensive help through their man pages e.g.:

man sbatch

shows you the help pages for the sbatch command.

https://slurm.schedmd.com/documentation.html

14

In addition to the above commands, the table below gives two more commands that can be used in
special cases, e.g. to obtain an interactive session, such as used in the Machine Learning examples.
The commands are

Command Description

salloc
allocate resources for a job in real time (typically used to allocate resources and
spawn a shell, in which the srun command is used to launch parallel tasks)

srun used to submit a job for execution in real time

Please note: srun can be used to launch application into execution from within submission scripts.
The success of this in the case of MPI distributed applications depends on the MPI software stack
having been build with support for PMI (Process Management Interface).

Preparing a submission script

A submission script is a bash script that

▪ describes the processing to carry out (e.g. the application, its input and output, etc.) and
▪ requests computer resources (number of GPUs, amount of memory, etc.) to use for

processing.

The simplest case is that of a job that requires a single node with the following requirements:

▪ the job uses 1 node,
▪ the application is a single process,
▪ the job uses a single GPU,
▪ the job will run for no more than 10 hours,
▪ the job is given the name “job123” and
▪ the user should be emailed when the job starts and stops or aborts.

Supposing the application run is called myCode and takes no command line arguments, the following
submission script runs the application in a single job:

#!/bin/bash
set the number of nodes
#SBATCH --nodes=1
set max wallclock time
#SBATCH --time=10:00:00
set name of job
#SBATCH --job-name=job123
set number of GPUs
#SBATCH --gres=gpu:1
mail alert at start, end and abortion of execution
#SBATCH --mail-type=ALL
send mail to this address
#SBATCH --mail-user=name.surname@domain.extension
run the application
myCode

15

We will now break down each of the commands.

▪ #!/bin/bash: This sets the script as a Linux bash script
▪ For Slurm, the lines starting with #SBATCH are directives that request job scheduling

resources. (Note: it is important that you put all the directives at the top of a script, before
any other commands; any #SBATCH directive coming after a bash script command is ignored!)

▪ #SBATCH –nodes: This sets the number of compute nodes requested for the job; in the case
of the above example, we have only requested 1.

▪ #SBATCH –error: This set where the standard error file should be stored and specifies the
name of the file. This can be left as default and will be stored in your home directory or can
be set by including the full path to the dir ectory after SBATCH --error.

▪ #SBATCH –output: This is the same principle as the standard error but allows the user to
specify where the standard output is to be stored.

▪ #SBATCH --job-name: To be used to name the job you are running so that it can be
distinguished for other work.

▪ #SBATCH –time=T: This sets the maximum walltime (where T has format H:M:S) that the job
can run for before it is automatically killed by SLURM (your job may well finish before this
time).

▪ #SBATCH –gres: This requests specific resources, primarily on JADE2 this will be requesting
the number of GPUs the job requires, in the example we are requesting 1 gpu.

▪ #SBATCH –partition: This sets the partition you wish the job to run on, each partition has a
separate queue with different specifications (maximum wall time and running job limit).

▪ #SBATCH --mail-user=<email_address>: An email notification is sent if an address is
specified. The notification options can be set with #SBATCH --mail-type=<type>, where
<type> may be BEGIN, END, FAIL, REQUEUE or ALL (for any change of job state).

▪ myCode: In the example the job is only required to run the application called myCode. This can
be expanded to set various different operations required as part of the job and is to be
written in normal Linux bash script. The job starts in the same folder where it was submitted
(unless an alternative path is specified), and with the same environment variables (modules,
etc.) that the user had at the time of the submission. In this example, this final part only
involves invoking the myCode application executable.

Here is an example of a bash submission script which invokes a Python script named
tftestmultigpu.py:

#!/bin/bash
set the number of nodes
#SBATCH --nodes=1
set max wallclock time
#SBATCH --time=01:00:00
set name of job
#SBATCH --job-name=TF_TEST_MULTIGPU
set number of GPUs
#SBATCH --gres=gpu:8
run the application
python3 tftestmultigpu.py

Submitting jobs with the command sbatch

16

Once you have a submission script ready (e.g. called submit.sh), the job is submitted to the execution
queue with the command sbatch script.sh. The queueing system prints a number (the job id)
almost immediately and returns control to the Linux prompt. At this point the job is in the submission
queue.

Once the job submitted, it will sit in a pending state until the resources have been allocated to your
job (the length of time your job is in the pending state is dependent upon a number of factors
including how busy the system is and what resources you are requesting). You can monitor the
progress of the job using the command squeue (see below).

Once the job starts to run you will see files with names such as slurm-1234.out either in the directory
you submitted the job from (default behaviour) or in the directory where the script was instructed
explicitly to change to.

Job partitions on JADE2

Partitions are Slurm entities defined by the system administrators that allow the separation and
control of jobs according to their characteristics. Each partition has a number of compute nodes
associated with it, as well as properties that control job placement. A job can be submitted to be
executed by a particular partition, and if no partition is specified, the default one is selected.

There are three partitions on JADE, which are:

Partition name Description
big Partition dedicated to jobs that occupy an entire node, i.e. 8 GPUs
small Partition dedicated to jobs that utilise a single GPUs each.
devel Partition dedicated to testing.

The partitions have the following limits for submitted jobs:

Partition name Partition Size Job Walltime limit Running Job limit
big 30 nodes 24 hours 5 Jobs
small 30 nodes 6 days 8 Jobs
devel 3 nodes 1 hour 1 Job

The default partition is big. Information on these partitions can be obtained with the commands
sinfo -a or scontrol show partition=small.

Submitting to a particular partition can be done by specifying the partition as an argument to sbatch,
e.g. sbatch -p devel sub.sh, or by directly supplying a request for that partition in the submission
script, e.g. #SBATCH --partition=devel.

The devel partition should be used to check your submission script works correctly and that your
application starts to execute without errors.

17

Upon reaching the per user running job limit for a partition, any further jobs submitted to that same
partition by the same user will be shown as state Pending (PD) with the Reason set as
QOSMaxJobsPerUserLimit.

Monitoring jobs with the command squeue

squeue is the main command for monitoring the state of systems, groups of jobs or individual jobs.

The command squeue prints the list of current jobs. The list looks something like this:

OUTPUT:

| JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
| 2497 devel srun bob R 0:07 1 dgk119
| 2499 big test1 mary R 0:22 4 dgk[201,204]
| 2511 small test2 steve PD 0:00 4 (Resources)

The first column gives the job ID, the second the partition where the job was submitted, the third the
name of the job (specified by the user in the submission script) and the fourth the user ID of the job
owner. The fifth is the status of the job (R = running, PD = pending, CA = cancelled, CF = configuring,
CG = completing, CD = completed, F = failed). The sixth column gives the elapsed time for each
particular job. Finally, there are the number of nodes requested and the nodelist where the job is
running (or the cause that it is not running).

Some useful command line options for squeue include:

▪ -u for showing the status of all the jobs of a particular user, e.g. squeue -u bob;
▪ -l for showing more of the available information;
▪ -j for showing information regarding a particular job ID, e.g. squeue -j 7890;
▪ --start to report the expected start time of pending jobs.

Read all the options for squeue on the main page squeue using the command man squeue, including
how to personalize the information to be displayed.

Deleting jobs with the command scancel

Use the scancel command to delete a job, e.g. scancel 1121 to delete job with ID 1121. Any user
can delete their own jobs at any time, whether the job is pending (waiting in the queue) or running.
A user cannot delete the jobs of another user. Normally, there is a (small) delay between the
execution of the scancel command and the time when the job is dequeued and killed.

Environment variables

At the time a job is launched into execution, Slurm defines multiple environment variables, which can
be used from within the submission script to define the correct workflow of the job. A few useful
environment variables are the following:

▪ SLURM_SUBMIT_DIR, which points to the directory where the sbatch command is issued;
▪ SLURM_JOB_NODELIST, which returns the list of nodes allocated to the job;

18

▪ SLURM_JOB_ID, which is a unique number Slurm assigns to a job.

In most cases, SLURM_SUBMIT_DIR does not have to be used, as the job lands by default in the
directory where the Slurm command sbatch was issued.

SLURM_SUBMIT_DIR can be useful in a submission script when files must be copied to/from a specific
directory that is different from the directory where sbatch was issued.

SLURM_JOB_ID is useful to tag job specific files and directories (typically output files or run directories)
in order to identify them as produced by a particular job. For instance, the submission script line

myApp &> $SLURM_JOB_ID.out

runs the application myApp and redirects the standard output (and error) to a file whose name is
given by the job ID. Note: the job ID is a number assigned by Slurm and differs from the character
string name given to the job in the submission script by the user.

Job arrays

An array job allows users to run the same job a number of times with different inputs, using a single
submission command and submission script. Clearly, this is a lot quicker than manually submitting
the job multiple times and allows for easier management of running and completed jobs as well as
maximising results throughput.

In order to submit array jobs, users must prepare the appropriate submission script template,
keeping in mind that it will be used by all the jobs in the array, i.e. each job will require the same
amount of resources, wall-time etc. Note that users should add to the submission script a way to
provide, or generate, the appropriate simulation/input parameters needed by the program
executable to run each simulation in the array.

Here are a few examples:

submit a job array with index values between 0 and 7
$ sbatch --array=0-7 sub.sh

submit a job array with index values of 1, 3, 5 and 7
$ sbatch --array=1,3,5,7 sub.sh

submit a job array with index values between 1 and 7 with a step size of 2 (i.e. 1,
3, 5 and 7)
$ sbatch --array=1-7:2 sub.sh

The index values are used by Slurm to initialise two environment variables when the job launches
into execution. These variables are

▪ SLURM_ARRAY_JOB_ID, set to the first job ID of the array and
▪ SLURM_ARRAY_TASK_ID, set to the job array index value.

19

To give an example, suppose you submit an array of three jobs using the submission command
sbatch --array=1-3 sub.sh, which returns:

OUTPUT: Submitted batch job 10

Then, the environment variables in the three jobs will be

Job array index Variables
1 SLURM_ARRAY_JOB_ID=10; SLURM_ARRAY_TASK_ID=1
2 SLURM_ARRAY_JOB_ID=10; SLURM_ARRAY_TASK_ID=2
3 SLURM_ARRAY_JOB_ID=10; SLURM_ARRAY_TASK_ID=3

The above environment variables can be used within the submission script to define what each
individual job within the array does. To take a simple example, suppose each job in the array uses a
single GPU and takes the input from a file that is identified by the same index as the job. The
submission script could look like this:

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --job-name=test
#SBATCH --time=00:30:00
#SBATCH --gres=gpu:1
myCode --input "file_${SLURM_ARRAY_TASK_ID}.inp"

The application myCode will then use the file_1 as the input for the first job in the array file_2 as
the input for the second job in the array and so forth.

The module tool

The GNU/Linux operating system makes extensive use of the working environment, which is a
collection of individual environment variables. An environment variable is a named object in a shell
that contains information used by one or more applications; two of the most used such variables are
$HOME, which defines a user’s home directory name, and $PATH, which represents a list paths to
different executables. A large number of environment variables are already defined when a shell is
open but the environment can be customised, either by defining new environment variables relevant
to certain applications or by modifying existing ones (e.g. adding a new path to $PATH).

module is a Software Environment Management tool, which is used to manage the working
environment in preparation for running the applications installed on JADE2. By loading the module
for a certain installed application, the environment variables that are relevant for that application are
automatically defined or modified.

Useful commands

The module utility is invoked by the command module. This command must be followed by an
instruction of what action is required and by the details of a pre-defined module.

The utility displays a help menu by doing:

20

module help

The utility displays the available modules by issuing the command:

module avail

OUTPUT:

------------------- /jmain02/apps/lmod/lmod/modulefiles/Core -------------------
 lmod/7.6 settarg/7.6 use.dev use.own use.viz

------------------ /jmain02/apps/Modules/modulefiles/packages ------------------
 autodock-gpu/1.5.2 gromacs/2021.2 (D) plumed/2.6.2
 emacs/27.1 mdtraj/1.9.5 pytorch/1.9.0
 ffmpeg/4.2.2 namd/2.14 sox/14.4.2
 gnuplot/5.2.8 namd/3.0-alpha7 (D) tensorflow/2.3.1
 gromacs/2020.3 nano/5.3 tensorflow/2.7.0 (D)
 gromacs/2020.4-plumed-2.6.2 opencv/4.2.0 tmux/3.2a (D)
 gromacs/2021.1 openmm/7.5.0 vim/8.2

------------------- /jmain02/apps/Modules/modulefiles/other --------------------
 cuda/10.1 gcc/9.1.0 python/anaconda3
 cuda/10.2 hdf5/1.10.7 python/3.8.6 (D)
 cuda/11.1-gcc-9.1.0 netcdf/4.7.4 tmux/3.2a
 cuda/11.2 (D) openmpi/4.0.5-gcc-9.1.0

 Where:
 D: Default Module

Use "module spider" to find all possible modules.
Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

or displays only the information related to a certain software package, e.g.:

module avail tensorflow

OUTPUT:

------------------ /jmain02/apps/Modules/modulefiles/packages ------------------
 tensorflow/2.3.1 tensorflow/2.7.0 (D)

 Where:
 D: Default Module

Use "module spider" to find all possible modules.
Use "module keyword key1 key2 ..." to search for all possible modules matching
any of the "keys".

The avail instruction displays all the versions available for the installed applications, and shows
which version is pre-defined as being the default. A software package is loaded with the load or the
add instructions, e.g.:

module load tensorflow

If no version is specified, the default version of the software is loaded. Specific versions, other than
the default can be loaded by specifying the version, e.g.:

21

module load tensorflow/2.7.0

OUTPUT:

Python 3.8.6 is now loaded in your environment.

 CUDA-11.2 loaded

 TensorFlow-2.7.0 with Python3 loaded.

The modules that are already loaded by users in a session are displayed with the command:

module list

A module can be “unloaded” with the unload or rm instructions, e.g.:

module unload tensorflow
module load gromacs/2020.3

Lastly, all modules loaded in a session can be “unloaded” with a single command::

module purge

Best practices

module can be used to modify the environment after login, e.g. to load the Portland compilers in
order to build an application. However, most frequent usage will be to load an already built
application, and the best way to do this is from within the submission script. For example, assuming
a job uses the NAMD molecular dynamics package, the submission script contains:

module purge
module load namd

Using Containerised Applications

On entering the container the present working directory will be the user’s home directory:
/home_directory

Any files you copy into /home_directory will have the same userid as normal and will be available
once exiting the container. The local disk space on the node is available at: /local_scratch/$USERID

Any data will be lost once the interactive session is ended. There are two ways of interacting with the
containerised applications.

Docker Containers

Listing available containers
To list the containers and version available on the system do:

-bash-4.2$ containers

22

OUTPUT:

REPOSITORY TAG IMAGE ID CREATED SIZE
nvcr.io/nvidia/tensorflow 20.11-tf2-py3 98a7952f7f9c 5 weeks ago 11.6GB
nvcr.io/nvidia/pytorch 20.11-py3 ae35b2b3cad1 5 weeks ago 13.2GB
nvcr.io/hpc/namd 3.0-alpha3-singlenode 205dd048d054 5 months ago 1.24GB
nvcr.io/hpc/gromacs 2020.2 c8a188675719 5 months ago 570MB
nvcr.io/nvidia/caffe 20.03-py3 aa6834df762b 9 months ago 4.82GB
nvcr.io/nvidia/caffe2 18.08-py3 e82334d03b18 2 years ago 3.02GB
nvcr.io/nvidia/torch 18.08-py2 889c9b4d3b71 2 years ago 3.06GB

All the applications in containers can be launched interactively in the same way using 1 compute
node at a time. The number of GPUs to be used per node is requested using the gres option. To
request an interactive session on a compute node the following command is issued from the login
node:

srun --gres=gpu:2 --pty /jmain02/apps/docker/pytorch 20.11-py3

This command will show the following, which is now running on a compute node:

OUTPUT:

=============
== PyTorch ==
=============

NVIDIA Release 20.11 (build 17345815)
PyTorch Version 1.8.0a0+17f8c32

Container image Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.

Copyright (c) 2014-2020 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain
Melvin, Jason Weston)
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny
Mariethoz)
Copyright (c) 2015 Google Inc.
Copyright (c) 2015 Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.

NVIDIA Deep Learning Profiler (dlprof) Copyright (c) 2020, NVIDIA CORPORATION. All
rights reserved.

Various files include modifications (c) NVIDIA CORPORATION. All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying
project or file.

NOTE: Legacy NVIDIA Driver detected. Compatibility mode ENABLED.

groups: cannot find name for group ID 31196
I have no name!@085a165a38ee:/home_directory$

23

Note. The warnings in the last two lines can be ignored. To exit the container, issue the “exit”
command. To launch the other containers the commands are:

srun --gres=gpu:8 --pty /jmain02/apps/docker/theano 18.08
srun --gres=gpu:4 --pty /jmain02/apps/docker/torch 18.08-py2

Batch Mode

There are wrappers for launching the containers in batch mode. For example, to launch the Torch
application:

A Slurm batch script is used to launch the code, such as:

#!/bin/bash
#SBATCH --nodes=1
#SBATCH -J Torch
#SBATCH --gres=gpu:8
#SBATCH --time=01:00:00
/jmain02/apps/docker/torch-batch -c ./submit-char.sh

The output will appear in the slurm standard output file.

Each of the containerised applications has its own batch launching script:

/jmain02/apps/docker/torch-batch
/jmain02/apps/docker/caffe-batch
/jmain02/apps/docker/theano-batch

Singularity Containers

Singularity 3.7 is installed on compute nodes, it is not available on login nodes. When you build your
container, within your own environment, your container you must have the following directories:

/tmp
/local_scratch

These will be mounted by the local node when your container executes. The /tmp & /local_scratch
directory are the local RAID disks on the DGX node and should be used for building code or temporary
files.

Unlike Docker containers, the home directory is the same as when you’re outside the container (e.g.
/jmain02/home/your_project/your_group/your_username). You can use cd ~ to get to your home
directory and echo $HOME to print out your home location.

There are 2 scripts in the /jmain02/apps/singularity/2.4/bin directory that you can use to launch
your container using Slurm:

singbatch
singinteractive

24

You call them with either

singinteractive CONTAINER_FILE
OR

singbatch CONTAINER_FILE SCRIPT_TO_EXECUTE

You should use these scripts with Slurm. So for example with an INTERACTIVE session:

srun -I --pty -t 0-10:00 --gres gpu:1 -p small singinteractive
/jmain02/apps/singularity/singularity-images/caffe-gpu.img

If you want to run in batch mode, you should call singbatch (using sbatch) and provide a script to
execute within the container.

You MUST respect the CUDA_VISIBLE_DEVICES variable within the container, as you can see ALL the
GPUs in the container. Some of these GPUs may be in use by other users and Slurm has allocated
you a specific ones/group & will set this variable for you. If you are familiar with Docker, it only shows
you the GPUs have been allocated.

Slurm will clear out /tmp and /local_scratch once you exit the container, so make sure you copy
anything back to your home directory if you need it! There is an example “caffe” image provided in
/jmain01/apps/singularity/singularity-images if you wish to contribute an image for others to
use, please submit an issue to the Github Issue tracker.

25

How and where to save your data on JADE2

We would like to make users aware that data stored on the JADE2 cluster is not backed up. Although
JADE2 is designed for resilience and will be carefully administered buy our Platforms and
Infrastructure group, in the event of a catastrophic failure there is no guarantee data would be able
to be retrieved from the machines. Users who have project critical data are encouraged to take
regular local backups to avoid transferring large volumes of data from the system at once.

Data from jobs run on the JADE2 system should be stored in the user’s home directory and will be
stored there by default. Data can also be stored in the group or project shared directory, if data needs
to be accessed by collaborators it should be stored in the shared directory.

The directory structure would be:

/jmain02/home/project/group/user for the user’s home directory

And for shared directories:

/jmain02/home/project/shared
/jmain02/home/project/group/shared

The simplest way to direct where the data would be stored is to specify this in the submission script
using the SBATCH commands for standard error and standard output, etc. Should you wish to save
data outside of the default location, for example in shared directories, you can specify the full path
for the file.

Where required there is additional ‘flash’ storage that can be used in addition to the standard
storage disks, this is only provided to specific groups who are approved by the JADE management
consortium. If your project wishes to utilise this flash storage the Principle investigator of the project
must submit a request via the Self-Service portal specifying which groups within that project are
requesting access to the flash storage and details to explain why this is required. If this is approved
the users within that group will have their accounts configured to access flash.

When storing data on flash storage the file path would be

/jmain02/flash/project/group/user
/jmain02/flash/project/group/shared

In addition to these persistence storage options there is also temporary ‘raid’ storage which can be
used to hold data required during simulations. This storage is only available when the job is running
and will be removed by Slurm automatically once the job has been completed.

It should also be mentioned that Git version control system is installed on JADE2.

More information about SFTP File Transfer Protocol, and SFTP client and server software for all
operating systems can be found at the following link:
https://www.ssh.com/academy/ssh/sftp .

https://www.ssh.com/academy/ssh/sftp

