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Preamble: Generalization



Why worry?

We want models that can perform well across different data sets
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Why worry?

(Re)-training models is costly
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Why worry?

We want models that are hard to spoof
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The right model?

« Evenwhen the models explain the data equally well, we somehow are
urged to favour those that are “simpler”

» From a Bayesian perspective this makes sense — priors act as
regulanzers, promoting “simpler” solution spaces

* Yet, modern hyper-parametric models, such as DNNs, seem
bewilderingly over-complex, yet achieve state-of-the-art performance —
even when we don’tregularize!



The Bayesian view

Neural Networks for
Pattern Recognition

Christopher M. Bishop

3
S
S

jj J \~ \\} Bayesian Methods for Adaptive Models

BIShOp’ 1995 Thesis by David John Cameron MacKay
Do
In Partial Fulfillment of the Requirements

Figure 10.1. Schematic example of three models, Hi, H2 and Hz, which have for the Degree of Doctor. of Philosophy
successively greater complexity, showing the probability (known as the ewvi-
dence) of different data sets D given each model ;. We see that more com- California Institute of Technology
plex models can describe a greater range of data sets. Note, however, that the Fasadena; Califorafa
distributions are normalized. Thus, when a particular data set Dy is observed, i
the model H, has a greater evidence than either the simpler model H; or the (Submitted December 10, 1991)

more complex model H;.
Advisor: Prof. J.J. Hopfield



Bayesian Deep Learning and a Probabilistic Perspective of Generalization

The Bayeslan view

Andrew Gordon Wilson Pavel Izmailov 2022
New York University
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Figure 2. A probabilistic perspective of generalization. (a) Ideally, a model supports a wide range of datasets, but with inductive biases
that provide high prior probability to a particular class of problems being considered. Here, the CNN is preferred over the linear model
and the fully-connected MLP for CIFAR-10 (while we do not consider MLP models to in general have poor inductive biases, here we are
considering a hypothetical example involving images and a very large MLP). (b) By representing a large hypothesis space, a model can
contract around a true solution, which in the real-world is often very sophisticated. (c) With truncated support, a model will converge to an

erroneous solution. (d) Even if the hypothesis space contains the truth, a model will not efficiently contract unless it also has reasonable
inductive biases.



Bayesian Deep Learning and a Probabilistic Perspective of Generalization

The Bayesian view

New York University
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(b) By representing a large hypothesis space, a model can contract around a true
solution, which in the real-world is often very sophisticated.

(d) Even if the hypothesis space contains the truth, a model will not efficiently contract
unless it also has reasonable inductive biases.



Regularization — a classic inductive bias

d2y
Bending Energy is function of |——4
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Norm on weights -> ridge regression, Lasso etc
Width of basis -> kernel lengthscales etc

1

(Tikhonov and Arsenin, 1977)



Regularization — priors -> inductive bias

I =dm, 1}
y = f(D,w)
p(D,w) o< p(D|w)p(w)
E(D,w) = — log p(D|w)—log p(w)

|
100 Y Y

Data error term Penalty term

0 50 100 0 50 100
J

In effect, we induce a bias such that “simpler”
solutions are preferred (more on that later)

0 50 100 0 50 100



Regularization — noise injection

| by ®  input neuron
’\"‘, /\ ,v’/\"‘-‘ ",’\\ ‘/\ °
Vi MG @@—% TN N\~ ®®° tiggenneuron
' ' ® output neuron
& NS
U added Gaussian noise
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Alexander Camuto, Matthew Willetts, Umut AzimaY ekli, Stephen Roberts, Chris Holmes (2020). Explicit
Regularisation in Gaussian Noise Injections. Proceedings of NeurlPS 2020 .



Regularization

0 50 100 0 50 100

20 100

0 50 100 0 50 100

* Early stopping

* Momentum terms

« (Stochastic) weight averaging
(Bayesian) model averaging

Sharmpness (much more later...)

Training Function

.
! Testing Function

iV

Flat Minimum Sharp Minimum

Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss
function and the X-axis the variables (parameters)

Figureimported from Figure 1 of: NS Keskar et al. On Large-Batch Training for Deep Leaming:
Generalization Gap and Sharp Minima. (2017)



The Dynamics of Leaming

“Yet, modern hyper-parametric models, such as
DNNSs, seem bewilderingly over-complex, yet
achieve state-of-the-art performance — even
when we don’t reqularize!”



Sharpness

Generalization gap = |In-sample error — ‘Unseen’ set error|

Large training temperatures?! (A/B) seemto lead to flatter basins ->“simpler”
solutions, potentially with a lower generalization gap?

Training Function

\ / re . . .
) L4 ! Testing Function

o _ f(z)
Figure imported from Figure 1 of: NS
Keskar et al. On Large-Batch Training
for Deep Learning: Generalization Gap

and Sharp Minima. (2017)

FFlat Minimum Sharp Minimum

Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss
function and the X-axis the variables (parameters)

1. D Granziol et al. Learning Rates as a Function of Batch Sze: A Random Matrix Theory Approach to Neural Network Training. (2020)
2 SHochreiter, JSchmidhuber. Flat minima. (1997)



Hessian is a general Wishart matrix, so

Sharpness eigen density given by Marchenko-Pastur
distribution
P(A)
Hessian is inverse covariance, so larger A
eigenvalues -> sharper solutions
O’FE
H ij —

awiawj W



Sharpness

< —— Continuous Bulk
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Eigenvalue A 0.00 3.26 17.28
(a) Hypothetical p()) (b) VGG-16 C-100 Hessian

Figure from: Diego Granziol, Stefan Zohren, Stephen Roberts (2022). Learning Rates as a Function of Batch Size: A Random Matrix Theory
Approachto Neural Network Training. Journal of Machine Leaming Research 23(173):1-65, 2022.



Published as a conference paper at ICLR 2021 SGD SAM
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Figure 1: (left) Error rate reduction obtained by switching to SAM. Each point is a different dataset
/ model / data augmentation. (middle) A sharp minimum to which a ResNet trained with SGD Simran Kaur!, Jeremy Cohen', Zachary C. Lipton!

converged. (right) A wide minimum to which the same ResNet trained with SAM converged. tCarnegie Mellon University
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The edge of stability o

(a) step size n=0.09 (b) step size n=0.11

neos — 01

Figure 2: Gradient descent on a quadratic
with eigenvalues a; = 20 and ay = 1.

JCohen et al. Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. (2021)



The phases of learning — phase 1

We see progressive
sharpening whilst
2

Amnax < —
Ui

Thenthere is a
distinct transition to
another regime...

(a) Mean Squared Error (MSE) loss
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Figure 4: Once the sharpness crosses 2 /7, gradient descent becomes destabilized. We run gradi-
ent descent at 7 = 0.01. (a) The sharpness eventually reaches 2/7n. (b) Once the sharpness crosses
2/n, the iterates start to oscillate along q; with ever-increasing magnitude. (¢) Somehow, GD does
not diverge entirely; instead, the train loss continues to decrease, albeit non-monotonically.

JCohen et al. Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. (2021)



The phases of learning — phase 2

Sequential instabilities as EVs ‘peel away’
from the btilk and move to EdS

Progressing
sharpening
regime
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accuracy Eigenvalues
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Passing through instabilities
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Instabilities - wobbly Hesslans

The Hessian matrix becomes highly variable through an
instabllity —in the directions of larges )\

Noise-injection regularization along directions of
maximum sharpness
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Aha!

Yet, modern hyper-parametric models, such as DNNS,
seem bewilderingly over-complex, yet achieve state-of-
the-art performance — even when we don’t regularize

(Deep) Neural Networks — so long as we have instabilities
— are self-regularizing



Solong as we have instabilities. . .

We can promote this be having large learning rates, as the edge of stabllity
is given by 2 /7

MLP - Constant LR VGGS5k - Constant LR
0.800 A
0.50
0.795 1
0.790 A 0.45
v 0.785 1 )
v v
©
2 0.780 R
0.775 1
0.35
0.770 A
0.765 A
0.30
0.760 1 T T
0 10 101 0 10" 102 10 10

(a) MLP-fMNIST (b) VGG-CIFARSk



SGD SAM

Sharpness - revisited
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The notion of flatness has been challenged by Dinh et al. (2017), who argued that the different flatness measures
proposed are not invariant under reparametrization of the parameter space and questioned the assumption that flatness
directly causes generalization.

(Alison Pouplin, Hrittik Roy, Sidak Pal Singh, Georgios Arvanitidis, On the curvature of the
loss landscape, 2023)

SHARPNESS-AWARE MINIMIZATION FOR EFFICIENTLY

. , _ o IMPROVING GENERALIZATION
On the Maximum Hessian Eigenvalue and Generalization

Pierre Foret * Ariel Kleiner Hossein Mobahi

Simran Kaurf, Jeremy Cohen', Zachary C. Lipton' Google Research , Coogle Research. Google Rescarch
pierre.pforet@gmail.com akleiner@gmail.com hmobahi@google.com

fCarnegie Mellon University

. . Beh Neyshab
{skaur, jeremycohen, zlipton}@cmu.edu TR AT

Blueshift, Alphabet
neyshabur@google.com
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The Effective Number of Parameters:
An Analysis of Generalization and Regularization
in Nonlinear Learning Systems

FE I~ e e John E. Moody
. : . Department of Computer Science, Yale University
Neural Information Processing Systems: Natural & Synthetic P.O. Box 2158 Yale Station, New Haven, CT 06520-2158

: Internet: moody@cs.yale.edu, Phone: (203)432-1200
Monday - Thursday, December 2 - 5, 1991; Denver, Colorado * Friday - Saturday, December 6 - 7, 1991; Vail, Colorado y y ! ( )

The relationship between expected training set and expected test set errors for linear

models trained using the SSFE error function with no regularizer is well known In
statistics (Akaike 1970, Barron 1984, Eubank 1988). The exact relation for test and
training sets with density (9):

o
(gtest)ff' - (gtrain)f + 20’22 . K

n /azlna_'_/\

eff(A
(ErestN))eer = (Etrain(N)) + 202, 2 fi( )

Moody referred to this asthe Generalized Prediction Error (GPE)



Effective number of parameters

MacKay also derived this
as part of his thesis
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Figure from Lawrence Wang, Stephen J. Roberts (2023). SANE: The phases of gradient descent through Sharpness Adjusted Number of

Effective parameters. https://arxiv.org/abs/2305.18490

MacKay, David J.C. (1991) Bayesian methods for adaptive models. Dissertation (Ph.D.), California Institute of Technology.
John Moody, NIPS 1991. The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems
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Effective number of parameters

Correlation with out of sample loss
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What about the GPE?  (£reaV))eer = (Errain(N))e + 207, PeL)

Yy oy
Na = S A
1 7

i )\3‘4—06

Tr(G'H)

- Measure of sharpness (flatness) focused on the density of outliers
- Invariant under (affine) reparametrization

- SAM can be recovered as special case

The notion of flatness has been challenged by Dinh et al. (2017), who argued that the different flatness measures
proposed are not invariant under reparametrization of the parameter space and questioned the assumption that flatness

directly causes generalization.
Y & (Alison Pouplin, Hrittik Roy, Sidak Pal Singh, Georgios Arvanitidis, On the curvature of the

loss landscape, 2023)



Neurocomputing

Could we improve on SAM? A e,

Hessian regularization of deep neural

Use a smoothed (diag()nal) FIM to networks: A novel approach based on
- - - stochastic estimators of Hessian trace
precondition the Hessian
= G-ADAM & G-TRACHR Of course, this is a popular topic!
Lg(’lU) = L(’UJ) -+ prI‘I'(G_l.H(’UJ)) (from G-TRACER, John
Williams)

w 4 w — aVy[L(w) + pTr(G~H(w))]
G« (1-58)G + BF

* Diego Granziol, Stefan Zohren, Stephen Raoberts (2022). Learning Rates as a Function of Batch Size: A Random Matrix Theory
Approach to Neural Network Training. Journal of Machine Learning Research 23(173):1-65

* Diego Granziol, Nicholas Baskerville, Xingchen Wan, Samuel Albanie, Stephen Roberts (2024). Iterative Averaging in the
Quest for Best Test Error. Journal of Machine Learning Research (JMLR), 25(20):1-55

* John Williams, Stephen Roberts (2023). G-TRACER Expected Sharpness Optimization. https://arxiv.org/abs/2306.13914



Yes!

with aug

Table 3: CIFAR-100: ResNet20, accuracy (standard error)
50% noise & no aug

no aug
SGD 51.43 % (0.41)
SAM 58.98 % (0.52)
SGD-TRACER | 63.47% (0.32)

70.02% (0.36)
70.33% (0.22)
70.71% (0.36)

21.96% (0.36)
49.89% (0.32)
51.62% (0.18)

Table 4: CIFAR-100: ViT, accuracy (standard error)
with aug

SGD

SAM

SAM batch-split
SGD-TRACER

SGD-TRACER batch-split

37.7 % (0.71)
38.2 % (0.52)
38.7 % (0.44)
39.1 % (0.32)
41.6 % (0.28)

Table 5: NLP tasks BERT base-uncased results, accuracy (standard error)

WIC

RTE

BOOLQ
Adam 73.84% (0.14)
SAM 73.95% (0.13)
Adam-TRACER | 75.09% (0.04)

69.36% (0.08)
69.06% (0.07)
70.01% (0.06)

69.18% (0.33)
69.54% (0.28)
70.13% (0.18)



INn conclusion

* Learning to generalize from complex data sets requires thought!

* Instabilities in learning, far from being a problem, are beneficial to
generalization

* |f we harness unstable dynamics in learning, we avoid costly
hyper-parameter tuning

* (D)NNs self-regularize if allowed (consider very large learning
rates!)



“Civilization advances by extending the number of important operations
which we can perform without thinking of them.”

- Alfred North Whitehead

Thankyou! WFJADE

Tier 2 HPC
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