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Preamble: Generalization



Why worry?

We want models that can perform well across different data sets



Why worry?

(Re)-training models is costly



Why worry?

We want models that are hard to spoof



The right model?

• Even when the models explain the data equally well, we somehow are
urged to favour those that are “simpler”

• From a Bayesian perspective this makes sense – priors act as 
regularizers, promoting “simpler” solution spaces

• Yet, modern hyper-parametric models, such as DNNs, seem 
bewilderingly over-complex, yet achieve state-of-the-art performance – 
even when we don’t regularize!



The Bayesian view

Bishop, 1995



The Bayesian view 2022



The Bayesian view

(b) By representing a large hypothesis space, a model can contract around a true

solution, which in the real-world is often very sophisticated.

(d) Even if the hypothesis space contains the truth, a model will not efficiently contract

unless it also has reasonable inductive biases.

2022



Bending Energy is function of

Norm on weights -> ridge regression, Lasso etc 

Width of basis -> kernel lengthscales etc

(Tikhonov and Arsenin, 1977)

Regularization – a classic inductive bias



Regularization – priors -> inductive bias

Data error term Penalty term

In effect, we induce a bias such that “simpler”

solutions are preferred (more on that later)



Regularization – noise injection

Alexander Camuto, Matthew Willetts, Umut AzimaYekli, Stephen Roberts, Chris Holmes (2020). Explicit 

Regularisation in Gaussian Noise Injections. Proceedings of NeurIPS 2020 .



Regularization
• Early stopping

• Momentum terms

• (Stochastic) weight averaging

• (Bayesian) model averaging

• Sharpness (much more later…)

Figure imported from Figure 1 of: NS Keskar et al. On Large-Batch Training for Deep Learning:
Generalization Gap and Sharp Minima. (2017)



The Dynamics of Learning

“Yet, modern hyper-parametric models, such as 
DNNs, seem bewilderingly over-complex, yet 
achieve state-of-the-art performance – even 
when we don’t regularize!”



Sharpness

• Generalization gap = |In-sample error – ‘Unseen’ set error|

• Large training temperatures1 (λ/B) seem to lead to flatter basins -> “simpler”

solutions, potentially with a lower generalization gap2

1. D Granziol et al. Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training. (2020)
2. S Hochreiter, J Schmidhuber. Flat minima. (1997)

Figure imported from Figure 1 of: NS 

Keskar et al. On Large-Batch Training 
for Deep Learning: Generalization Gap 

and Sharp Minima. (2017)



Sharpness

Hessian is inverse covariance, so larger 

eigenvalues -> sharper solutions

Hessian is a general Wishart matrix, so 

eigen density given by Marchenko-Pastur 

distribution



Sharpness

Figure from: Diego Granziol, Stefan Zohren, Stephen Roberts (2022). Learning Rates as a Function of Batch Size: A Random Matrix Theory 

Approach to Neural Network Training. Journal of Machine Learning Research 23(173):1-65, 2022.



Goal – tame the maximum eigenvalue

SAM – shows impressive performance 

boosts (though there are mixed reports of 

performance gains)



The edge of stability

J Cohen et al. Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. (2021)



The phases of learning – phase 1

J Cohen et al. Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. (2021)

We see progressive 

sharpening whilst

Then there is a 

distinct transition to 

another regime…



The phases of learning – phase 2

epoch

Sequential instabilities as EVs ‘peel away’

from the bulk and move to EoS
Progressing 

sharpening 

regime



Instabilities

Validation 

loss

Phase 2 leads to progressive instabilities in 

learning

Oscillations in w (mainly in directions of 

maximum sharpness) induce phase changes 

leading to less-sharp solutions with improved 

performance



Instabilities

t-SNE plot of w



Passing through instabilities

Dashed line = starting point in direction of parameter update 

Solid line = end point after update using standard SGD



Instabilities - wobbly Hessians
The Hessian matrix becomes highly variable through an

instability – in the directions of largest

Noise-injection regularization along directions of

maximum sharpness
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Yet, modern hyper-parametric models, such as DNNs, 

seem bewilderingly over-complex, yet achieve state-of- 

the-art performance – even when we don’t regularize

(Deep) Neural Networks – so long as we have instabilities

– are self-regularizing

Aha!



So long as we have instabilities…
We can promote this be having large learning rates, as the edge of stability 

is given by



Sharpness - revisited

Do we really want to tame ?

No! As we want to induce instabilities

But, we want to tame the number of large

(Alison Pouplin, Hrittik Roy, Sidak Pal Singh, Georgios Arvanitidis, On the curvature of the 

loss landscape, 2023)



Back in 1991, at NeurIPS

Moody referred to this as the Generalized Prediction Error (GPE)



Effective number of parameters

MacKay also derived this

as part of his thesis

Figure from Lawrence Wang, Stephen J. Roberts (2023). SANE: The phases of gradient descent through Sharpness Adjusted Number of 

Effective parameters. https://arxiv.org/abs/2305.18490

MacKay, David J.C. (1991) Bayesian methods for adaptive models. Dissertation (Ph.D.), California Institute of Technology.
John Moody, NIPS 1991. The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems

https://arxiv.org/abs/2305.18490


Effective number of parameters

Figure from Lawrence Wang, Stephen J. Roberts (2023). SANE: The phases of gradient descent through Sharpness Adjusted Number of 

Effective parameters. https://arxiv.org/abs/2305.18490

Correlation with out of sample loss

https://arxiv.org/abs/2305.18490


What about the GPE?

(Alison Pouplin, Hrittik Roy, Sidak Pal Singh, Georgios Arvanitidis, On the curvature of the 

loss landscape, 2023)

- Measure of sharpness (flatness) focused on the density of outliers

- Invariant under (affine) reparametrization

- SAM can be recovered as special case



Could we improve on SAM?
Use a smoothed (diagonal) FIM to 
precondition the Hessian

➔ G-ADAM & G-TRACER

* Diego Granziol, Stefan Zohren, Stephen Roberts (2022). Learning Rates as a Function of Batch Size: A Random Matrix Theory 

Approach to Neural Network Training. Journal of Machine Learning Research 23(173):1-65

* Diego Granziol, Nicholas Baskerville, Xingchen Wan, Samuel Albanie, Stephen Roberts (2024). Iterative Averaging in the 

Quest for Best Test Error. Journal of Machine Learning Research (JMLR), 25(20):1-55

* John Williams, Stephen Roberts (2023). G-TRACER: Expected Sharpness Optimization. https://arxiv.org/abs/2306.13914

Of course, this is a popular topic!

(from G-TRACER, John 

Williams)



Yes!



In conclusion

• Learning to generalize from complex data sets requires thought!

• Instabilities in learning, far from being a problem, are beneficial to 
generalization

• If we harness unstable dynamics in learning, we avoid costly 
hyper-parameter tuning

• (D)NNs self-regularize if allowed (consider very large learning 
rates!)



Thank you!

“Civilization advances by extending the number of important operations 

which we can perform without thinking of them.”

- Alfred North Whitehead
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