Sánchez Villegas, Danae, D. Preotiuc-Pietro, and N. Aletras (2020) Point-of-Interest Type Inference from Social Media Text Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics, Online: Association for Computational Linguistics, pp. 804–810
G. Lucas, S. Jeub, G. Colavizza, X. Dong et al. (2021) Local2global: Scaling global representation learning on graphs via local training, In KDD 2021 workshop on Deep Learning on Graphs, DLG-KDD’21
D. Damen, H. Doughty et al. (2021) The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 43, no. 11, pp. 4125-4141.
E. Kazakos, J. Huh, A. Nagrani, A. Zisserman, D. Damen (2021) With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition British Machine Vision Conference (BMVC).
E. Kazakos, A. Nagrani, A. Zisserman, D. Damen (2021) Slow-Fast Auditory Streams for Audio Recognition IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Ali Akbari et al. (2021) How Does Loss Function Affect Generalization Performance of Deep Learning? Application to Human Age Estimation, ICML, 141-151.
S. Villegas, Danae, S. Mokaram, and N. Aletras (2021) [Analyzing Online Political Advertisements], Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, Online: Association for Computational Linguistics](https://arxiv.org/abs/2105.04047) pp. 3669–3680
A. Alajrami and Nikolaos Aletras (2022) How does the pre-training objective affect what large language models learn about linguistic properties? Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Volume 2, pages 131–147, Dublin, Ireland. Association for Computational Linguistics
S. Sarkar, E. Benetos, M.Sandler (2021) Vocal Harmony Separation Using Time-Domain Neural Networks, Proc. Interspeech 2021, 3515-3519, doi: 10.21437/Interspeech.2021-1531
J. Huo, H. Cai, & Q. Meng (2022) Graph Instinctive Attention Convolutional Network for Skeleton-Based Action Recognition. IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 1606-1611).
L. Jiang, G. Schaefer, & Q. Meng (2022) An Improved Novel View Synthesis Approach Based on Feature Fusion and Channel Attention IEEE International Conference on Systems Man and Cybernetics (SMC) (pp. 2459-2464).
Y. Zhou, B. Li, J Wang, E. Rocco & Q. Meng (2022) Discovering unknowns: Context-enhanced anomaly detection for curiosity-driven autonomous underwater exploration, Pattern Recognition, 131, p.108860.
Nowotny et al. (2022) Loss shaping enhances exact gradient learning with EventProp in Spiking Neural Networks
Knight et al. (2022) Neuro-Inspired Computational Elements Conference, Efficient GPU training of LSNNs using eProp.
Turner et al. (2022) Neuromorphic Computing and Engineering, Accelerating SNN inference using GPU-enabled neural networks
Abhra Chaudhuri et al. (2022) Relational Proxies: Emergent Relationships as Fine-Grained Discriminators, In the Proceedings of Neural Information Processing Systems (NeurIPS), New Orleans, USA
D. Damen, H. Doughty et al. (2022) Rescaling Egocentric Vision: Collection Pipeline and Challenges for EPIC-KITCHENS-100, International Journal of Computer Vision (IJCV).
W. Price, C. Vondrick, D. Damen (2022) UnweaveNet: Unweaving Activity Stories, IEEE/CVF Computer Vision and Pattern Recognition (CVPR).
A. Darkhalil, D. Shan, et al. (2022) EPIC-KITCHENS VISOR Benchmark: VIdeo Segmentations and Object Relations, Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track.
S. Joutard, R. Dorent, S.Ourselin, T. Vercauteren, M. Modat (2022) Driving Points Prediction For Abdominal Probabilistic Registration, MLMI
J. Scheen, M. Mackey, J. Michel (2022) Data-driven generation of perturbation networks for relative binding free energy calculations, Digital Discovery, 1, 870-885.
S. Gangapurwala, M. Geisert, R. Orsolino et al. (2022) RLOC: terrain-aware legged locomotion using reinforcement learning and optimal control, IEEE Transactions on Robotics, IEEE.
Y. Wang, M. Ramezani, M. Mattamala, S.T.’Digumarti & M. Fallon (2022) Strategies for large scale elastic and semantic LiDAR reconstruction, Robotics and Autonomous Systems, 155.
A. Proudman, M. Ramezani, S.T. Digumarti, N. Chebrolu & M. Fallon. (2022) Towards real-time forest inventory using handheld LiDAR, Robotics and Autonomous Systems, 157.
D. Granziol, S. Zohren, S. Roberts (2022). Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training, Journal of Machine Learning Research 23(173):1-65
C. Lu, T. Willi, A. Letcher, J. Foerster. (2022) Adversarial Cheap Talk Workshop on Machine Learning for Cybersecurity, Decision Awareness in Reinforcement Learning Workshop, ICML
C. Lu, J. G. Kuba, A. Letcher et al. (2022) Discovered Policy Optimisation NeurIPS Decision Awareness in Reinforcement Learning Workshop ICML
C. Lu, T. Willi, C. S. de Witt, J. Foerster. (2022) Model-Free Opponent Shaping In International Conference on Machine Learning. ICML(Spotlight) (pp. 14398-14411). PMLR.
L. Li, M. W. Spratling (2023) Data Augmentation Alone Can Improve Adversarial Training, International Conference on Learning Representations (ICLR)
L. Li, M. W. Spratling (2023) Understanding and combating robust overfitting via input loss landscape analysis and regularization, Pattern Recognition
P. Newman and D. D. Martini, B. Ramtoula et al. (2023) Visual DNA: Representing and Comparing Images using Distributions of Neuron Activations, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.