1. Oliver. J. Melling et al. (2023) Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo, Chemical Theory and Computational, 19,3.

  2. P. Newman and D. D. Martini, B. Ramtoula et al. (2023) Visual DNA: Representing and Comparing Images using Distributions of Neuron Activations, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

  3. L. Li, M. W. Spratling (2023) Understanding and combating robust overfitting via input loss landscape analysis and regularization, Pattern Recognition

  4. L. Li, M. W. Spratling (2023) Data Augmentation Alone Can Improve Adversarial Training, International Conference on Learning Representations (ICLR)

  5. X. Li, W. Armour.(2022) Intensity-Sensitive Similarity Indexes for Image Quality Assessment 26th International Conference on Pattern Recognition, ICPR.

  6. C. Lu, T. Willi, C. S. de Witt, J. Foerster. (2022) Model-Free Opponent Shaping In International Conference on Machine Learning. ICML(Spotlight) (pp. 14398-14411). PMLR.

  7. C. Lu, J. G. Kuba, A. Letcher et al. (2022) Discovered Policy Optimisation NeurIPS Decision Awareness in Reinforcement Learning Workshop ICML

  8. C. Lu, T. Willi, A. Letcher, J. Foerster. (2022) Adversarial Cheap Talk Workshop on Machine Learning for Cybersecurity, Decision Awareness in Reinforcement Learning Workshop, ICML

  9. Nicholas P Baskerville et al.(2022) Universal characteristics of deep neural network loss surfaces from random matrix theory Journal of Physics A: Mathematical and Theoretical. 55 494002.

  10. D. Granziol, S. Zohren, S. Roberts (2022). Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training, Journal of Machine Learning Research 23(173):1-65

  11. M. Rigter, B. Lacerda and N.Hawes (2022). RAMBO-RL: Robust adversarial model-based offline reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS).

  12. A. Proudman, M. Ramezani, S.T. Digumarti, N. Chebrolu & M. Fallon. (2022) Towards real-time forest inventory using handheld LiDAR, Robotics and Autonomous Systems, 157.

  13. Y. Wang, M. Ramezani, M. Mattamala, S.T.’Digumarti & M. Fallon (2022) Strategies for large scale elastic and semantic LiDAR reconstruction, Robotics and Autonomous Systems, 155.

  14. S. Gangapurwala, M. Geisert, R. Orsolino et al. (2022) RLOC: terrain-aware legged locomotion using reinforcement learning and optimal control, IEEE Transactions on Robotics, IEEE.

  15. P. Newman and D. D. Martini, I. Posner et al.(2022) Leveraging Translational Invariance of the Fourier Transform for Efficient and Accurate Radar Odometry, International Conference on Robotics and Automation (ICRA), IEEE, 2186-2192

  16. C. M. Orr et al. (2022) Hinge disulfides in human IgG2 CD40 antibodies modulate receptor signaling by regulation of conformation and flexibility Science Immunology, 7,73.

  17. Miroslav Suruzhon et al. (2022) Enhancing Ligand and Protein Sampling Using Sequential Monte Carlo, Theory and Computational, 18,6.

  18. J. Scheen, M. Mackey, J. Michel (2022) Data-driven generation of perturbation networks for relative binding free energy calculations, Digital Discovery, 1, 870-885.

  19. M. Mackey (2022) Data-driven Generation of Perturbation Networks for Relative Binding Free Energy Calculations

  20. B. Gao and M. W. Spratling (2022) Explaining away results in more robust visual tracking, Vis. Comput

  21. B. Gao and M. W. Spratling (2022) More robust object tracking via shape and motion cue integration, Signal Processing, Vol. 199

  22. B. Gao and M. W. Spratling (2022) Shape-texture debiased training for robust template matching, Sensors, online 22(17), p.6658.

  23. S. Joutard, R. Dorent, S.Ourselin, T. Vercauteren, M. Modat (2022) Driving Points Prediction For Abdominal Probabilistic Registration, MLMI

  24. A. Darkhalil, D. Shan, et al. (2022) EPIC-KITCHENS VISOR Benchmark: VIdeo Segmentations and Object Relations, Neural Information Processing Systems (NeurIPS) Datasets and Benchmarks Track.

  25. W. Price, C. Vondrick, D. Damen (2022) UnweaveNet: Unweaving Activity Stories, IEEE/CVF Computer Vision and Pattern Recognition (CVPR).
    J Ma, D Damen. Hand-Object Interaction Reasoning. (2022) IEEE Conf. on Advanced Video and Signal-Based Surveillance (AVSS).

  26. D. Damen, H. Doughty et al. (2022) Rescaling Egocentric Vision: Collection Pipeline and Challenges for EPIC-KITCHENS-100, International Journal of Computer Vision (IJCV).

  27. Abhra Chaudhuri et al. (2022) Cross-Modal Fusion Distillation for Fine-Grained Sketch-Based Image Retrieval, In the Proceedings of British Machine Vision Conference (BMVC), London, UK.

  28. Abhra Chaudhuri et al. (2022) Relational Proxies: Emergent Relationships as Fine-Grained Discriminators, In the Proceedings of Neural Information Processing Systems (NeurIPS), New Orleans, USA

  29. M. Pesavento, M. Volino, A. Hilton (2022) Super resolution 3D human shape from a single low resolution image, European conference on computer vision (ECCV22)

  30. Akash Rawat et al. (2022) Modelling Political Aggression On Social Media Platforms, The International AAAI Conference on Web and Social Media (ICWSM)

  31. Ammarah Farooq et al. (2022) AXM-Net: Implicit Cross-Modal Feature Alignment for Person Re-identification, AAAI, 4477-4485.

  32. H. Wang, C. Zhu, Z. Ma, C. Oh (2022) Improving Generalization of Deep Networks for Estimating Physical Properties of Containers and Fillings, IEEE Int. Conf. Acoustic, Speech, Sig. Proc. Grand Challenges: Audio-Visual Object Classification For Human-Robot Collaboration (1st rank)

  33. D.Stoidis, A. Cavallaro (2022) Generating gender-ambiguous voices for privacy-preserving speech recognition Proc. Interspeech, 4237-4241

  34. D.Stoidis, A. Cavallaro (2022) Content-based Graph Privacy Advisor IEEE Eighth International Conference on Multimedia Big Data (BigMM)

  35. J.C.Reus (2022) In Search of Good Ancestors / Ahnen in Arbeit NordiCHI ‘22: Nordic Human-Computer Interaction Conference. 78.1

  36. Turner et al. (2022) Neuromorphic Computing and Engineering, Accelerating SNN inference using GPU-enabled neural networks

  37. Knight et al. (2022) Neuro-Inspired Computational Elements Conference, Efficient GPU training of LSNNs using eProp.

  38. Nowotny et al. (2022) Loss shaping enhances exact gradient learning with EventProp in Spiking Neural Networks

  39. Y. Zhou, B. Li, J Wang, E. Rocco & Q. Meng (2022) Discovering unknowns: Context-enhanced anomaly detection for curiosity-driven autonomous underwater exploration, Pattern Recognition, 131, p.108860.

  40. L. Jiang, G. Schaefer, & Q. Meng (2022) An Improved Novel View Synthesis Approach Based on Feature Fusion and Channel Attention. IEEE International Conference on Systems Man, and Cybernetics (SMC) (pp. 2459-2464).

  41. J. Huo, H. Cai, & Q. Meng (2022) Graph Instinctive Attention Convolutional Network for Skeleton-Based Action Recognition. IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 1606-1611).

  42. J. Huang, E. Benetos and S. Ewert (2022) Improving Lyrics Alignment Through Joint Pitch Detection IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022, pp. 451-455

  43. Frazer, J., Notin, P., Dias, M. et al. (2021) Disease variant prediction with deep generative models of evolutionary data Nature 599, 91–95

  44. Hannah Kirk, Bertie Vidgen et al. (2022) Hatemoji: A Test Suite and Adversarially-Generated Dataset for Benchmarking and Detecting Emoji-Based Hate In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1352–1368, Seattle, United States. Association for Computational Linguistics.

  45. S. Sarkar, E. Benetos, M.Sandler (2021) Vocal Harmony Separation Using Time-Domain Neural Networks, Proc. Interspeech 2021, 3515-3519, doi: 10.21437/Interspeech.2021-1531

  46. D.Stoidis, A. Cavallaro (2021) Protecting Gender and Identity with Disentangled Speech Representations Proc. Interspeech, 1699-1703

  47. Ali Akbari et al. (2021) How Does Loss Function Affect Generalization Performance of Deep Learning? Application to Human Age Estimation, ICML, 141-151.

  48. A. Fernandez, M. D. Plumbley (2021) Using UMAP to Inspect Audio Data for Unsupervised Anomaly Detection under Domain-Shift Conditions, Proc Detection and Classification of Acoustic Scenes and Events 2021.

  49. E. Kazakos, A. Nagrani, A. Zisserman, D. Damen (2021) Slow-Fast Auditory Streams for Audio Recognition IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

  50. E. Kazakos, J. Huh, A. Nagrani, A. Zisserman, D. Damen (2021) With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition British Machine Vision Conference (BMVC).

  51. D. Damen, H. Doughty et al. (2021) The EPIC-KITCHENS Dataset: Collection, Challenges and Baselines IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 43, no. 11, pp. 4125-4141.

  52. G. Lucas, S. Jeub, G. Colavizza, X. Dong et al. (2021) Local2global: Scaling global representation learning on graphs via local training, In KDD 2021 workshop on Deep Learning on Graphs, DLG-KDD’21

  53. B. Gao and M. W. Spratling (2021) Robust template matching via hierarchical convolutional features from a shape biased CNN, Proceedings of the International Conference on Image, Vision and Intelligent Systems (ICIVIS), Lecture Notes in Electrical Engineering, Vol. 813. Springer, Singapore.

We are always looking for new ideas and feedback.

Any questions or comments, please report it via GitHub issue tracker.